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Spectral imaging and microscopy

Richard M. Levenson and Clifford C. Hoyt

Spectral Imaging

In biomedicine, color is frequently used to increase information content. Traditionally, in the
guise of histological stains, color signals the biochemical makeup of different regions of tissue,
most typically, nuclei vs. cytoplasm. When coupled to more precisely targeted indicators, such as

antibodies and nucleic acid probes, colors can allow
the detection of multiple, highly specific analytes.
However, our native ability to perceive and evaluate
color information is somewhat constrained because,
by definition, we are limited to the visible range in
terms of wavelengths, and because we (and our
conventional RGB cameras) are suboptimal in terms
of spectral resolution: all spectral information, no
matter how complex, is binned into about 3 broad
spectral ranges roughly corresponding to red, green
and blue. Spectral imaging is a relatively novel
technique which uses precise measurements of
optical spectra at every pixel of an image in order to
overcome these deficiencies and thereby to
appreciate differences in color that might otherwise

be inapparent. Sophisticated algorithms can be used for the extraction of maximum information
from the analyzed scenes. We find that when general histology stains are used, spectral analysis
can uncover unseen specificities in staining behavior. And when specific probes are applied to
tissue, spectral imaging can help disentangle multiple colors, even when they overlap either
spectrally, spatially, or both.

Spectral Imaging Methods

A spectral dataset generally consists of a number of images representing brightness at each pixel
as a function of wavelength. As shown in Figure 1, the data can be represented as a cube with
dimensions x,y and wavelength with an optical spectrum associated with every pixel. There are a
number of ways to acquire spectral data sets that are all capable of providing useful information.
Naturally, each method has its own set of advantages and disadvantages. In addition to relatively
inflexible multi-position filter wheels, current methods include tunable illumination, Fourier-
transform imaging spectroscopy and various forms of tunable bandpass filtering.

Most spectral imaging systems filter the imaged light (either transmitted or emitted), but some
approaches can vary the illumination source. Thus, with a tunable light source, the illuminating
light is scanned continuously or discontinuously through a number of wavelengths. A grayscale
image is taken at each desired wavelength and the resulting image stack constitutes a spectral
cube. This method benefits from simplicity, (relatively) low cost, and from the fact that no
additional optical or mechanical elements are interposed in the imaging light path, resulting in
minimal image degradation. The light sources can be tuned either using diffraction gratings, used
in most monochromators, or electronically tunable filters, such as acousto-optic tunable filters
(AOTFs) or liquid crystal tunable filters (LCTFs). This technique is good for brightfield only; it
does not provide spectral discrimination for fluorescence-based applications.

Figure 1.  A spectral cube  consists of
a number of  grayscale images showing
intensity at every pixel as a function of
wavelength. An optical spectrum is thus
associated with each pixel.
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In Fourier-transform imaging spectroscopy, commercialized by Applied Spectral Imaging (ASI),
light from the object passes through the microscope objective to enters a Sagnac interferometer
which splits it into two beams. These beams are sent in opposite directions around a common
light path and are allowed to interfere with one another after a small and variable optical path
difference (OPD) has been introduced. The resulting interference pattern is then focused onto a
cooled CCD detector. An interferogram at each pixel is generated by optically changing the OPD
and recording the digitized signals of successive frames. The computer then calculates the spectra
using a fast Fourier transform (FFT).1 Maximum image size is limited by computational
considerations to about 500 x 500 pixels in the instruments currently mounted onto light
microscopes. The cost of the commercially available units ($75K and up, exclusive of
microscope) is also a consideration.

Tunable filters come in three flavors: continuously variable circular filters (CVFs) which are
rotated to select the spectral bandpass; and acousto-optical and liquid crystal devices. CVFs pose
problems in that any imaged field will have a spectral gradient superimposed on it. With an
acousto-optical tunable filter (AOTF), filtered light of narrow spectral bandwidth is angularly
deflected away from the incident beam at the output of the crystal. The central wavelength of this
filtered beam is determined by the acoustic frequency of the AOTF; this wavelength can be
changed within approximately 25 s to any other wavelength. However, the technology suffers
from some drawbacks that have limited its use in microscopy, principally those of poor light
budget, and image blur and shift. Some technical solutions have been proposed,2 but these do not
address all the problems.

Liquid crystal tunable filters (LCTF), like AOTFs, permit the acquisition of a series of images
over a range of wavelengths using no moving parts. LCTFs use electrically controlled liquid
crystal elements that transmit a certain wavelength band while being opaque to others. The
rejection of the unselected wavelengths, without further manipulation, is about 104:1.3 The
bandpass can be as narrow as 1 nm and the spectral range of a typical device operating in the
visible range is 420 to 720. Similar LCTF configurations can provide tunable filtering into the
near IR up to 1.7 microns. Continuously tunable LCTFs can be switched from wavelength to
wavelength in about 50 milliseconds (faster units which toggle between defined states within 1
millisecond), and are optically well behaved in that they do not induce image distortion or image
shift. Image size is limited only by the resolution of the digital camera used. CRI, Inc. has
recently introduced a new version of this technology, the FluoroSpec“ tunable filter, which uses
polarizing beam splitters to harvest both polarization states. In combination with other technical
refinements, this has increased the signal at the CCD by about 4-fold over CRI s previous tunable
filters, making it suitable for use in fluorescence applications as well as for brightfield spectral
imaging.

Spectral Imaging Analysis Algorithms for Spectrally Complex Scenes

The reliable detection of malignant cells in stained tissue samples is still one of the most arduous
and time-consuming tasks in pathology and is a typical example of a pattern recognition problem.
In its most general case, the task of pattern recognition in images consists of three independent
steps: 1) the objects contained in the image scene are separated from the background (image
segmentation); 2) the characteristics of each object are quantified (feature extraction); and 3) each
object is assigned to a generic target class (classification).4 In many image analysis applications,
the image segmentation step is bypassed by defining each pixel as an individual object. A large
array of classification algorithms is available to automate this task.5
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There are several approaches to classifying pixels in a spectral image. The simplest scheme uses a
minimum squared error method to compare each pixel in the image with a set of reference spectra

using a least-squares criterion. Pixels
are classified according to which pure
spectrum they are most similar to and
can be pseudo-colored to indicate the
results of classification.6 There are
more advanced distance measures,
such as Mahalanobis,7 which can take
into account variance among spectral
classes. Determining which spectra to
use for the classification procedure is
not always straightforward. In simple
cases, the reference spectra can be
selected from obvious structures in the
image (foci of cancer vs. normal cells,
for example) or from established
spectral libraries. Alternatively,
informative spectra can be extracted
using statistical analysis methods, such
as principal component analysis (PCA)
or clustering methods.8 Instead of
using a classified pseudo-color
display, spectral similarity can also be
illustrated by mapping the degree of
similarity using gray-scale intensity.
This operation can reveal otherwise
inapparent morphological details.1

Frequently, classification or clustering
is not performed directly on the raw input data, but on some linear transformation of the latter
instead, typically the output of principal component analysis (PCA). This procedure has two
advantages: first, the transformation of the original image data results in data that is typically
better suited for subsequent classification. Second, a compression of the input data is achieved,
which, given the high data volumes of modern image acquisition systems, is often a very
desirable option.9 PCA is exclusively based on the information contained in the covariance
matrix of the input data. The covariance is a so-called second-order statistic, which takes only
relationships between pairs of pixels in the input data into account. Higher order structures that
depend on more than two pixels, such as edges, can therefore not be detected by PCA.10,11 Given
these shortcomings, image transformations that explicitly incorporate higher-order statistics to
obtain a meaningful representation of the image data may prove to be a promising area of
algorithm research.

Pixel Unmixing

When pixels can be or are composed of more than one spectral class, as is often encountered
when multiplexed protein or nucleic acid probes are used, then the pixels, rather than being
classified, have to be unmixed.  A linear combinations algorithm can be used to unmix the
signals arising from the pure spectral components. The linear combinations algorithm assumes

Figure 2. Spectral histochemistry . A spectral dataset of
a formalin-fixed, paraffin-embedded, H&E-stained
atypical nevus was acquired. Top panel: RGB-display of a
spectral cube showing atypical melanocytes engulfing a
portion of normal epidermis. An intense lymphocytic
infiltrate is visible to the left. Bottom panel: Different
cellular features can be classified using spectral signatures.
The result is similar to that obtained with special
immunostains.
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each pixel is made up of a combination of pure spectra. Given an appropriate set of standards, the
algorithm can quantitate the absolute amount of each label present.12 The linear combinations

algorithm can only be applied in situations where the pure
spectra combine linearly. This property holds for
fluorescence images, but transmission and reflectance
images must be converted to optical density before
applying the linear combinations algorithm.

Applications of spectral imaging in biomedicine

The mainstay of the field of pathology remains the
microscopic examination of fixed and stained slices of
tissue. Routine histopathology relies on staining with
hematoxylin and eosin (H&E); although these dyes have
certain affinities for cellular constituents, they are non-
specific. Cytopathology specimens, including cervico-
vaginal Pap  smears, are usually stained with other dyes,
including the Romanowsky-Giemsa formulation (azure B
and eosin Y) and the Papanicolaou stain (hematoxylin,
orange G, eosin Y and light green), which generally create
a wider variety of colors than are generated by classical
H&E. Changes in cellular constituents that accompany
inflammation and neoplasia and other physiological and
pathological processes affect the distribution, intensity and
color of the stains (for example, see Frable13).
Diagnostically important spectral features can be subtle
and not easily assessed by the naked eye. However, using
spectral imaging techniques, we have been able to
distinguish cellular types from one another, including
neoplastic vs. normal cells of the same cellular lineage.

Figure 2 illustrates the potential utility of spectral
classification, using a minimum-square-error classification

algorithm, to analyze conventionally stained pathology specimens. The tissue is skin obtained
from a biopsy of an atypical melanocytic nevus (a possible precursor lesion for melanoma),
routinely processed and stained with hematoxylin and eosin. The upper large panel consists of an
RGB-representation of the spectral cube  obtained by scanning the specimen over the
wavelength range 400-700 nm with a Sagnac imaging interferometer using a 10× microscope
objective. The lower panel shows the result of spectral classification using a least-squares metric.
Spectral signatures of melanocyte nuclei and cytoplasm, keratinocyte nuclei and cytoplasm and
lymphocyte nuclei are sufficiently distinct that the various compartments can be identified,
spatially located and enumerated, without the use of special stains or intensive, hands-on operator
involvement. This may be of great use in standardizing the evaluation of melanocytic penetration
into skin compartments (vertical penetration into the dermis), since sometimes it is difficult to
assess the extent of involvement (individual melanocytes may be hard to discern by eye whereas
they can be detected spectrally).
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Figure 3. Top panel: An RGB-
display of a spectral cube taken of
Papanicolaou-stained
cervicovaginal smear (Pap-
smear). Bottom panel: Using
reference spectra, the image was
classified and pseudo-colored on
a pixel-by-pixel basis. The
cytoplasmic regions are clearly
distinguishable from the nuclear
regions, and the individual cell
nuclei themselves form distinct
spectral classes.
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Spectral analysis of a cervico-vaginal Pap smear is shown in Figure 3. The top panel contains an
synthetic RGB image (derived from the full spectral dataset) of Papanicolaou-stained cervical
smear containing squamous epithelial cells (a normal superficial cell, several normal intermediate
cells and a mildly dysplastic cell). Also present in the image are a lymphocyte and 2
polymorphonuclear neutrophils (PMNs) normal inflammatory cells. Regarding color alone, the

nuclei of these cells, with the
exception of the superficial
cell (colored red-orange by
orange keratin staining), are
largely indistinguishable.
Small squares in several
nuclei indicate regions used
to determine reference
spectra to be used in spectral
classification. The lower
panel shows the result of
image classification on a
pixel-by-pixel basis using
reference spectra and pseudo-
colors. The cytoplasmic
regions are clearly
distinguishable from the
nuclear regions, and the
individual cell nuclei

themselves form distinct spectral classes.

Prostate cancer cells can be spectrally detected in images of prostate biopsy tissue stained with
hematoxylin and eosin. This capability could be useful, for example, in automated screening of

prostate chips  removed for benign
prostatic hyperplasia (BPH). Large
volumes of tissue have to be
examined in a search for potentially
tiny foci of clinically unsuspected
cancer. Figure 4 demonstrates that it
is possible to spectrally separate
malignant and normal epithelial cells,
and to detect basal cells as well (these
are a second cell layer found in
normal prostate glands but absent in
cancer). The segmentation is not
perfect. Some of the imperfections
(such as isolated misclassified pixels)
can be suppressed using image
processing techniques. However, the
limitations in the present case include
the fact that only a minimum square
error algorithm was used more
work is needed to explore capabilities
of alternative analytical tools.

Figure 4. Spectral segmentation of a formalin-fixed, paraffin-
embedded, H&E-stained prostate section (20×). Left panel: An
RGB-rendition of the spectral datacube (Nl: normal; Ca: cancer).
Right panel: spectral segmentation is shown. Green: normal
epithelial nuclei; blue: basal cell nuclei; red: cancer cell nuclei;
pink: stroma; yellow and tan: epithelial cytoplasm.
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Figure 5. Spectral segmentation using a single dye. White
blood cells differing in maturation state were stained using
only one proprietary fluorescent dye and spectrally imaged
using a CRI VariSpec“ tunable filter. By eye, only slight
differences in intensity (not hue) were visible. However,
using PCA, 4 spectrally distinct regions could be
discerned, corresponding to the nuclei and cytoplasm of
each cell.
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Remarkably, spectral information can also be extracted even if only a single dye is used, because
dye behavior can be spectrally, if subtly, complex. In Figure 5, obtained with a CRI VariSpec“
liquid crystal tunable filter, a single fluorescent dye was used to stain two similar white blood
cells in different stages of maturation. The spectral dataset was used to separately segment the
nuclei and the cytoplasms of both cells even though the image, as perceived by the human eye or
conventional RGB camera, revealed nothing except slight changes in intensity (hue appeared
constant). The segmentation was accomplished using PCA.

Multicolor Immunohistochemistry

Immunohistochemistry involves the detection of antigens using antibodies coupled to some kind
of chromogenic readout system. In the past two decades the technique has become central to the
practice of oncologic pathology since it can distinguish between look-alike lesions (mesothelioma
vs. carcinoma, for example), or divine the cellular lineage of extremely undifferentiated
neoplasms (lymphoma vs. other small blue cell tumors).14 It can also be used to highlight the
presence of otherwise easily overlooked microscopic foci of tumor, such as micrometastases
lurking in lymph nodes, and can be used to measure quantitatively the levels of diagnostically or
prognostically important markers such as estrogen- and progesterone-receptors, and now, Her2-
neu expression, in breast cancers, p53, ki-67, and a host of others.15   

There are increasing indications for multicolor simultaneous staining. However, interpretation of
multiply stained images is difficult, since it can be hard-to-impossible to judge, by eye or even by
video camera with color-based software, whether and where more than one color overlap.
Quantitation, even when only a single chromogen is present, can also be tricky when, as is
frequently the case, a counterstain is used.16 Computerized image analysis of such scenes has
long been under development, prompted in part by research showing that interobserver variability
in assessing immunostain intensity can be a considerable.17 However, several technical and
practical problems arise with such systems. First, the fidelity and consistency of RGB-based
systems can be disappointing. Section-to-section variability, along with interactions with camera
controls such as automatic gain control, can induce fluctuations in the image quality. Because the

Figure 6. Spectral analysis of Papanicolaou- and AE3-stained sputum cells. Using linear combination
analysis, the signal from the brown chromogen can be quantitatively extracted from the image. A:
RGB-image showing how the immunostain obscures cellular morphological detail. B: AE3-signal
digitally removed, showing cellular morphology. C: Chromogen signal alone, suitable for quantitation.
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color of a stained object is a product of the stain s transmittance and the camera s spectral
response, it is possible that dyes differing in spectral properties could be sensed similarly by the
camera and thus be indistinguishable. Finally, the spatial resolution of single-chip color CCD
cameras is lower than that of monochrome cameras with the same pixel count because of the
color mask and interpolation routines that merge information from 3 or more pixels when
determining RGB and intensity values.

Spectral imaging can provide the necessary spectral resolution to detect and resolve multiple
stains. In a recent publication, Ornberg et al. describe using a CRI VariSpec“ tunable filter to
identify optimal wavelengths for separating signal from background in samples stained with a
single chromogen plus background stain.18 Using a simple processing routine, the authors were
able to collect 2-3 images per minute. Zhou et al., using spectral decomposition in multispectral
images, were able to resolve stain intensities in double- and triple-labeled prostate cancer
specimens. However, the previous lack of convenient and affordable spectral imaging instruments
has hindered the widespread adoption of this kind of approach.

We used a CRI VariSpec to acquire spectral images of sputum immunostained for cytoskeletal
proteins using a brown chromogen for read-out and counterstained with the Papanicolaou stain
(Figure 6). Using linear combination algorithms, we were able to separate the brown stain from
the blue and red Pap-stain colors and present them individually. This allows both quantitative
evaluation of immunostain intensity and qualitative assessment of the underlying morphology.

Conclusion: Beyond Red, Green and Blue

Previous limitations in color imaging can now be overcome due to recent developments in
spectral imaging hardware, coupled with the evolution of software tools to deal with the resulting
high-dimensionality datasets. New possibilities have opened up for scientific and clinical
biomedical imaging; the challenge is to explore them all.
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