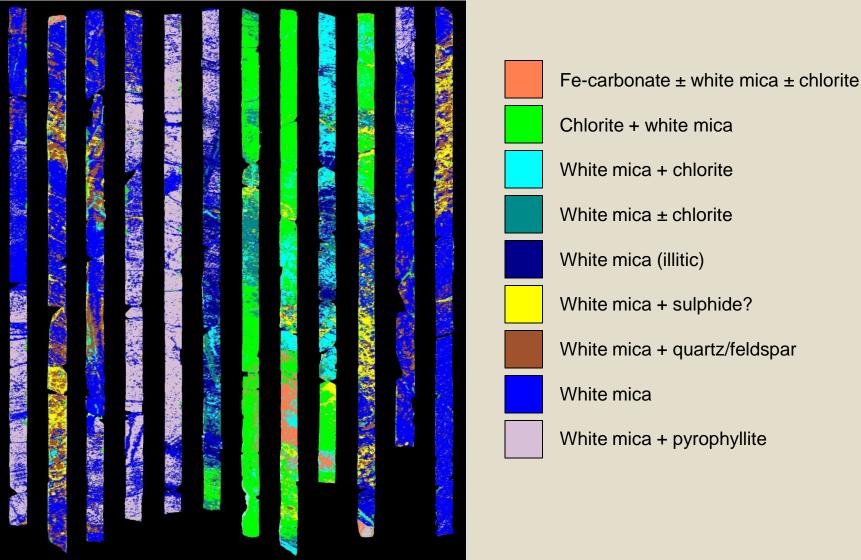


Paul Linton¹, Phil Harris², Neil Pendock³, Jennifer Betancourt¹, Paula Montoya¹, Rudi Jahoda¹ and Rainer Bars⁴

- 1 AngloGold Ashanti Ltd
- 2 Anglo American plc
- 3 Picoimages
- 4 Specim Ltd


CORE IMAGING – HISTORY AT AGA

- Proof of concept exercise in 2003 using De Beers AMS airborne scanner
- Decision made to develop imaging system as opposed to profiler
- Delivery of Hyperspectral Core Imager (HCI) in 2005, designed and built by SpecTerra Systems
- Used extensively on Witwatersrand reef intersections, as well as other deposits
- Shortcomings are core handling, acquisition speed, transportability
- Cannot be used as a production instrument, so other options evaluated
- Specim SisuRock prototype tested in 2007, indicated that this is a feasible instrument

HYPERSPECTRAL CORE IMAGER

Hyperspectral Core Imager (HCI) Specifications		
Scanning System Wavelength Range Spectral Resolution Spatial Resolution	~500nm to ~2500nm ~5nm 0.5mm x 0.5mm	
RGB Camera System Frame capture system Spatial Resolution	~24 frames/meter <100 microns	
Rates and Volumes Scanning Speed Spectral Data Camera Data	~4m/hour (high res.) ~340Mb/meter (raw) ~130Mb/meter (raw)	

WITWATERSRAND RESULTS

LA COLOSA PROSPECT

- Discovered in 2007 (stream sediment geochemistry)
- First hole >200 metres @ 1.4g/t
- 56 diamond holes drilled 2007-2008, inferred resource of 12.9 Moz @1g/t
- Porphyry deposit, hosted by polyphase dioritic intrusives intruded into Palaeozoic metasediments (schists) with localised hornfelsing
- Mineralisation hosted in intrusives, country rocks
- Well developed alteration (potassic, sodic-potassic)
- Prefeasibility study initiated, after hiatus (permitting) now in progress

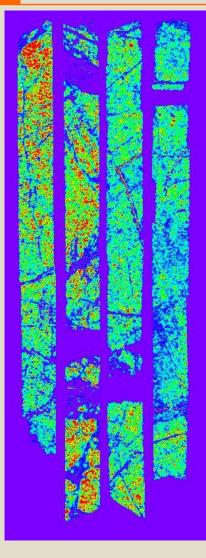
IMAGING OF COLOSA CORE

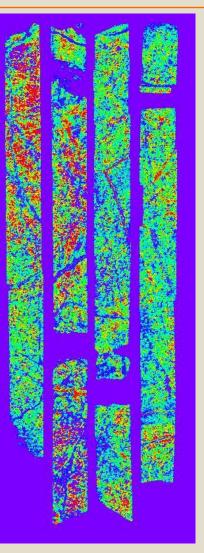
- Suitable site for production test of a hyperspectral imaging system
- Main application is geometallurgical
- Specim prototype rented, delivered to site in January 2009 (~130kg total weight)
- Local geologists trained for data capture
- All 56 boreholes (17000 metres) imaged in two week period, including data QA/QC
- System was SWIR camera only, no VNIR data captured
- No RGB system fitted

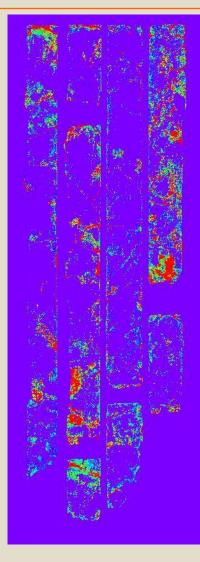
SISUROCK AT WORK

DATA PROCESSING

- Large volume of raw data (~1 Terabyte)
- Bad bands identified and omitted
- Data processed using in-house software
- Data volume too large for endmember/classification approaches
- Spectral features extracted (absorption depths, wavelengths, intensities)
- Data were inspected to identify minerals present biotite, amphibole (hornblende/actinolite), chlorite, epidote, kaolinite, sericite, illite, AI-smectite, goethite, dolomite, jarosite, nontronite identified
- Decision tree approach used to code pixels by minerals present using spectral feature information
- Spectral features output as averages over 0.5 metre intervals
- Mineral count percentages calculated and output for 0.5 metre intervals


QA/QC AND PROCESSING ISSUES

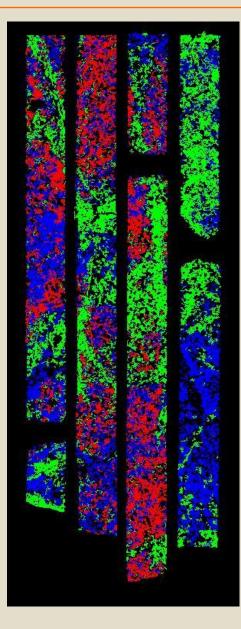


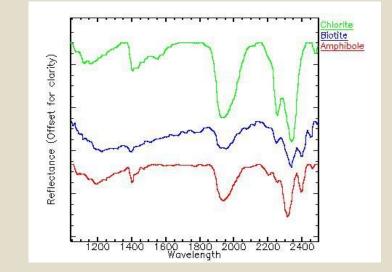


- Initially, weight of core created problems, solution provided overnight
- Different size boxes (3, 4 and 5 rows)
- ~ 1mm spatial resolution achieved
- Incomplete/no white measurement
- Masking of core boxes non-trivial (slight changes in spectral response, not all boxes straight)
- Dust at base of box manually removed

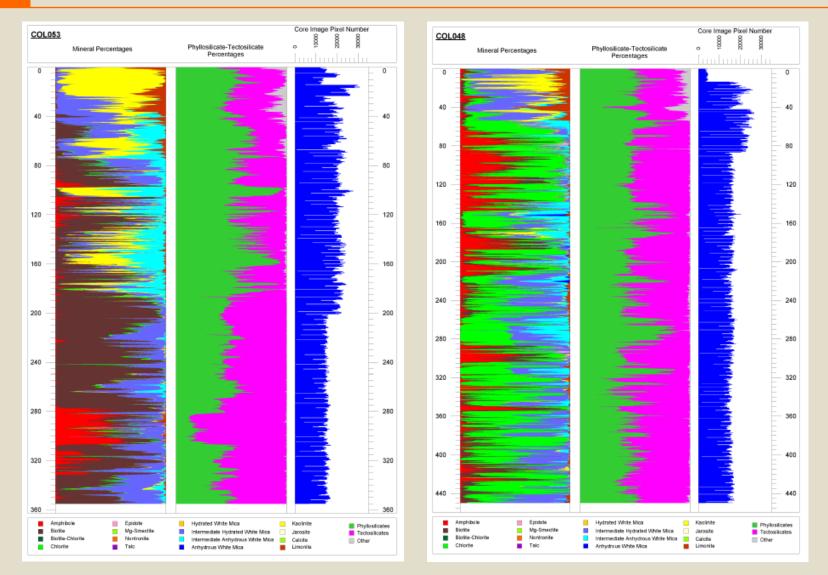
SPECTRAL FEATURES

D2200

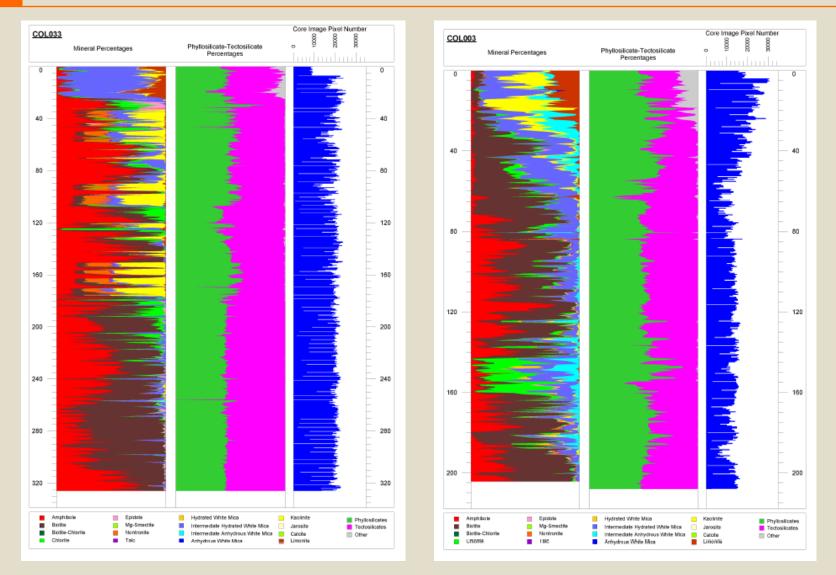

D2250

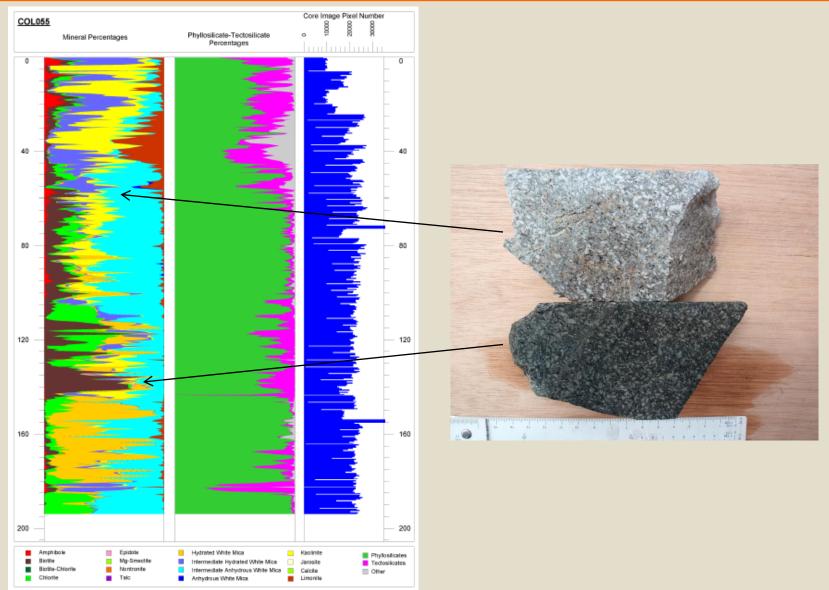

D2260 AngloGold Ashanti

DECISION TREE APPROACH


🛤 Administrator Application for Batch Manager		
File Modules Templates Help		
Templates AIDH (2009/03/27 Owner: PLL)	New Template Delete Template Edit Template	
Modules	Module Setup	
Available Modules add_wavelength_calibration	Inputs Outputs User/Other Inputs	
	If Blank, the User is prompted for a value at	
Modules In Template bh. batchapplymask (Ver.4.3)	the start of the task	
bh_batchapplymask (2) (Ver.4_3) bh_batchapplymask (3) (Ver.4_3)	PIXELS ERODE 0 Info	
bh_batchbandmath (Ver:4_2)	Default: 5	
bh_batchcondmasking (Ver:4_1) bh_batchcondmasking (2) (Ver:4_1)		
bh_batchcondmasking (3) (Ver.4_1) bh_batchcondmasking (4) (Ver.4_1)	PIXELS DILATE 0 Info	
bh_batchcondmasking (5) (Ver.4_1) bh_batchcondmasking (6) (Ver.4_1)	Delduk, U	
bh_batchcondmasking (7) (Ver:4_1)	ISLAND REMOVE 0	
bh_batchcondmasking (8) (Ver:4_1)		
Create Virtual Module Remove Module	Save Link	
Process Flow Drawing board		
	/irtual Module	
	-	
bh_batchcondmasking (5)		
bh_batchcondmasking bh_batchapplymask bh_batchcondmasking (3)		
bh batchcondmasking (8)		
bh_batchapplymask (2) bh_batchbandmath bh_batchapplymask (3) bh_batchcondmasking (6)		
bh_batchcondmasking (2) bh_batchcondmasking (4)		
bh_batchcondmasking (7)		
Cutur Deck		
System Ready	,	

DECISION TREE MINERAL MAPPING




MINERAL PROPORTION PLOTS

MINERAL PROPORTION PLOTS

MINERAL PROPORTION PLOTS

VALIDATION OF RESULTS

- Submitted 50 samples for QXRD (Rietveld) at two laboratories, two metre assay pulps
- QXRD results difficult to correlate with spectral data:
 - Overestimation of proportions using decision trees (yes/no answer)
 - Non-linear mixing effects (AIOH phyllosilicates "bright")
 - Quartz/feldspar uncertainty
 - Uncertainties in QXRD proportions (chlorite/kaolinite overlap, smectite and illite difficult to identify and thus quantify)
- Re-submit samples to more laboratories to test QXRD
- Test spectral feature results for correlations (cf. AMIRA P843A)

- Valuable dataset, objective and consistent across entire project area
- Identification of mineralogical zones within deposit (potentially different behaviours)
- Identification of low temperature alteration zone with enhanced grades
- Quantification needs to be addressed and solved for geometallurgical application
- Further processing development required (robust mask, reliable spectral matching to allow classification approach to large datasets)
- Total cost ~\$10 per metre, aim to reduce this to \$5 per metre in future
- Drilling cost north of \$350 per metre (helicopter support etc.), so very minor cost component